Boundedness of the square function and rectifiability

نویسندگان

  • Svitlana Mayboroda
  • Alexander Volberg
چکیده

Following a recent paper [10] we show that the finiteness of square function associated with the Riesz transforms with respect to Hausdorff measure H (n is interger) on a set E implies that E is rectifiable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Rectifiability, Calderón-zygmund Operators with Odd Kernel, and Quasiorthogonality

In this paper we study some questions in connection with uniform rectifiability and the L boundedness of Calderón-Zygmund operators. We show that uniform rectifiability can be characterized in terms of some new adimensional coefficients which are related to the Jones’ β numbers. We also use these new coefficients to prove that n-dimensional CalderónZygmund operators with odd kernel of type C2 a...

متن کامل

On the Uniform Rectifiability of Ad Regular Measures with Bounded Riesz Transform Operator: the Case of Codimension

We prove that if μ is a d-dimensional Ahlfors-David regular measure in R, then the boundedness of the d-dimensional Riesz transform in L(μ) implies that the non-BAUP David-Semmes cells form a Carleson family. Combined with earlier results of David and Semmes, this yields the uniform rectifiability of μ.

متن کامل

CHARACTERIZATION OF n-RECTIFIABILITY IN TERMS OF JONES’ SQUARE FUNCTION: PART I

In this paper it is shown that if μ is a finite Radon measure in R which is n-rectifiable and 1 ≤ p ≤ 2, then ∫ ∞ 0 β μ,p(x, r) 2 dr r < ∞ for μ-a.e. x ∈ R, where β μ,p(x, r) = inf L ( 1 rn ∫ B̄(x,r) ( dist(y, L) r )p dμ(y) )1/p , with the infimum taken over all the n-planes L ⊂ R. The β μ,p coefficients are the same as the ones considered by David and Semmes in the setting of the so called unif...

متن کامل

CHARACTERIZATION OF n-RECTIFIABILITY IN TERMS OF JONES’ SQUARE FUNCTION: PART II

We show that a Radon measure μ in R which is absolutely continuous with respect to the n-dimensional Hausdorff measure H is n-rectifiable if the so called Jones’ square function is finite μ-almost everywhere. The converse of this result is proven in a companion paper by the second author, and hence these two results give a classification of all n-rectifiable measures which are absolutely contin...

متن کامل

Rectifiability via a Square Function and Preiss’ Theorem

Let E be a set in R with finite n-dimensional Hausdorff measure H such that lim infr→0 r −n H (B(x, r)∩E) > 0 for H-a.e. x ∈ E. In this paper it is shown that E is n-rectifiable if and only if

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009